data.frame containing the inferred ancestry on the synthetic profiles.R/RAIDS.R
matKNNSynthetic.RdThe object is a data.frame with 4 columns.
data(matKNNSynthetic)The data.frame containing the information about the
synthetic profiles. The data.frame contains 4 columns:
sample.ida character string representing the unique
synthetic profile identifier.
Da numeric representing the number of dimensions used
to infer the ancestry of the synthetic profile.
Ka numeric representing the number of neighbors used
to infer the ancestry of the synthetic profile.
SuperPopa character string representing the
inferred ancestry of the synthetic profile for the specific D and K values.
The data.frame containing the information about the
synthetic profiles. The data.frame contains 4 columns:
sample.ida character string representing the unique
synthetic profile identifier.
Da numeric representing the number of dimensions used
to infer the ancestry of the synthetic profile.
Ka numeric representing the number of neighbors used
to infer the ancestry of the synthetic profile.
SuperPopa character string representing the
inferred ancestry of the synthetic profile for the specific D and K values.
This dataset can be
used to test the computeSyntheticROC function.
computeSyntheticROCfor calculating the AUROC of the inferences for specific values of D and K using the inferred ancestry results from the synthetic profiles
## Loading demo dataset containing pedigree information for synthetic
## profiles
data(pedSynthetic)
## Loading demo dataset containing the inferred ancestry results
## for the synthetic data
data(matKNNSynthetic)
## Retain one K and one D value
matKNN <- matKNNSynthetic[matKNNSynthetic$D == 5 & matKNNSynthetic$K == 4, ]
## Compile statistics from the
## synthetic profiles for fixed values of D and K
results <- RAIDS:::computeSyntheticROC(matKNN=matKNN,
matKNNAncestryColumn="SuperPop",
pedCall=pedSynthetic, pedCallAncestryColumn="superPop",
listCall=c("EAS", "EUR", "AFR", "AMR", "SAS"))
results$matAUROC.All
#> pcaD K ROC.AUC ROC.CI N NBNA
#> 1 5 4 0.6227679 0 52 0
results$matAUROC.Call
#> pcaD K Call L AUC H
#> 1 5 4 EAS 0.4807257 0.6547619 0.8287981
#> 2 5 4 EUR 0.4064737 0.5666667 0.7268596
#> 3 5 4 AFR 0.8168697 0.9154135 1.0000000
#> 4 5 4 AMR 0.3743226 0.5056818 0.6370411
#> 5 5 4 SAS 0.3609393 0.5047619 0.6485845
results$listROC.Call
#> $EAS
#>
#> Call:
#> roc.formula(formula = fCur ~ predMat[, j], ci = TRUE, quiet = TRUE)
#>
#> Data: predMat[, j] in 42 controls (fCur 0) < 10 cases (fCur 1).
#> Area under the curve: 0.6548
#> 95% CI: 0.4807-0.8288 (DeLong)
#>
#> $EUR
#>
#> Call:
#> roc.formula(formula = fCur ~ predMat[, j], ci = TRUE, quiet = TRUE)
#>
#> Data: predMat[, j] in 42 controls (fCur 0) < 10 cases (fCur 1).
#> Area under the curve: 0.5667
#> 95% CI: 0.4065-0.7269 (DeLong)
#>
#> $AFR
#>
#> Call:
#> roc.formula(formula = fCur ~ predMat[, j], ci = TRUE, quiet = TRUE)
#>
#> Data: predMat[, j] in 38 controls (fCur 0) < 14 cases (fCur 1).
#> Area under the curve: 0.9154
#> 95% CI: 0.8169-1 (DeLong)
#>
#> $AMR
#>
#> Call:
#> roc.formula(formula = fCur ~ predMat[, j], ci = TRUE, quiet = TRUE)
#>
#> Data: predMat[, j] in 44 controls (fCur 0) < 8 cases (fCur 1).
#> Area under the curve: 0.5057
#> 95% CI: 0.3743-0.637 (DeLong)
#>
#> $SAS
#>
#> Call:
#> roc.formula(formula = fCur ~ predMat[, j], ci = TRUE, quiet = TRUE)
#>
#> Data: predMat[, j] in 42 controls (fCur 0) < 10 cases (fCur 1).
#> Area under the curve: 0.5048
#> 95% CI: 0.3609-0.6486 (DeLong)
#>